On the Power of Adaptivity in Matrix Completion and Approximation
نویسندگان
چکیده
We consider the related tasks of matrix completion and matrix approximation from missing data and propose adaptive sampling procedures for both problems. We show that adaptive sampling allows one to eliminate standard incoherence assumptions on the matrix row space that are necessary for passive sampling procedures. For exact recovery of a low-rank matrix, our algorithm judiciously selects a few columns to observe in full and, with few additional measurements, projects the remaining columns onto their span. This algorithm exactly recovers an n× n rank r matrix using O(nrμ0 log(r)) observations, where μ0 is a coherence parameter on the column space of the matrix. In addition to completely eliminating any row space assumptions that have pervaded the literature, this algorithm enjoys a better sample complexity than any existing matrix completion algorithm. To certify that this improvement is due to adaptive sampling, we establish that row space coherence is necessary for passive sampling algorithms to achieve non-trivial sample complexity bounds. For constructing a low-rank approximation to a high-rank input matrix, we propose a simple algorithm that thresholds the singular values of a zero-filled version of the input matrix. The algorithm computes an approximation that is nearly as good as the best rank-r approximation using O(nrμ log(n)) samples, where μ is a slightly different coherence parameter on the matrix columns. Again we eliminate assumptions on the row space.
منابع مشابه
Graph Matrix Completion in Presence of Outliers
Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...
متن کاملA New Load-Flow Method in Distribution Networks based on an Approximation Voltage-Dependent Load model in Extensive Presence of Distributed Generation Sources
Power-flow (PF) solution is a basic and powerful tool in power system analysis. Distribution networks (DNs), compared to transmission systems, have many fundamental distinctions that cause the conventional PF to be ineffective on these networks. This paper presents a new fast and efficient PF method which provides all different models of Distributed Generations (DGs) and their operational modes...
متن کاملHomotopy approximation of modules
Deleanu, Frei, and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, we have obtained the Postnikov-like approximation of a module, with the help of a suitable set of morphisms.
متن کاملA note on approximation conditions, standard triangularizability and a power set topology
The main result of this article is that for collections of entry-wise non-negative matrices the property of possessing a standard triangularization is stable under approximation. The methodology introduced to prove this result allows us to offer quick proofs of the corresponding results of [B. R. Yahaghi, Near triangularizability implies triangularizability, Canad. Math. Bull. 47, (2004), no. 2...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1407.3619 شماره
صفحات -
تاریخ انتشار 2014